B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

| Q. 1 | Attempt the following <br> 1) Derive Cauchy -Riemann equations for complex function $w=f(z)$ in polar form. <br> 2) Define harmonic function, Show that $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic and determine its conjugate function. |
| :---: | :---: |
| Q. 2 | Attempt the following <br> 1) Derive Cauchy-Rieman equation for a complex function $W=f(z)$ In polar form .Hence deduce that $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$. <br> 2) If $w=u+i v$ represent the complex potential function for an electric field and $u=3 x^{2} y-y^{3}$, determine the function $v$. |
| Q. 3 | Attempt the following <br> 1) If $f(z)$ is analytic function of $z$, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ <br> 2) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $(i) y=x(i i) y=x^{2}$ |
| Q. 4 | Attempt the following <br> 1) Find the image of infinite strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$ also show the region graphically. <br> 2) Define line integral .Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$; (ii) the parabola $x=3 y^{2}$ |
| Q. 5 | Attempt the following <br> 1) Define bilinear transformation, Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle onto the straight line $4 u+3=0$ <br> 2) State Cauchy integral theorem and Cauchy integral formula. Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z \quad, \text { where } c:\|z\|=3$ |
| Q. 6 | Attempt the following <br> 1) Determine the analytic function whose real part is $u=e^{-x}(x \sin y-y \cos x)$. <br> 2) Find the Bi-linear transformation, which maps the points $z=-1, i, 1$ into the points $w=1, i,-1$. |

B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

| Q. 7 | Attempt the following <br> 1) Find the Bi-linear transformation which maps the points $z=1, i,-i$ into the Points $w=0,1, \infty$. <br> 2) Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$, where $C$ is the circle $\|z\|=2$. |
| :---: | :---: |
| Q. 8 | Attempt the following <br> 1) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. <br> 2) Find the image of $\|z-2 i\|=2$ under the mapping $w=\frac{1}{z}$ |
| Q. 9 | Attempt the following <br> 1) Evaluate $\int_{1-i}^{2+3 i}\left(z^{2}+z\right) d z$ along the line joining the points $(1,-1)$ and $(2,3)$. <br> 2) Evaluate $\oint_{C} \frac{2 z+1}{z^{2}+z} d z$; where $C$ is $\|z\|=\frac{1}{2}$. |
| Q. 10 | Attempt the following <br> 1) If $w=u+i v$ represent the complex potential function for an electric field and $u=3 x^{2} y-y^{3}$, determine the function $v$. <br> 2) State the Residue theorem and evaluate $\int_{C} \frac{2 z+1}{(2 z-1)^{2}} d z$, where $C$ is the circle $\|z\|=1$. |
| Q. 11 | Attempt the following <br> 1) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. <br> 2) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ about $z=-2$. |
| Q. 12 | Attempt the following <br> 1) Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$ (ii) the parabola $x=3 y^{2}$ <br> 2) Find the image of the upper half plane under the transformation $w=\frac{z}{i-z}$. |
| Q. 13 | Attempt the following <br> 1) Find the Bi-linear transformation which maps the points $z=1, i,-i$ into the Points |

Each question is of equal Marks (10 Marks)

| Q.14 | $w=0,1, \infty$ <br> 2) <br> Determine the analytic function whose real part is $y+e^{x}$ cos $y$. |
| :--- | :--- |
| Qttempt the following |  |
| Q.15 Evaluate $\int_{C} \frac{z^{2}+1}{z(2 z+1)} d z$ where C is $\|z\|=1$. |  |
| 2) Under the transformation $w=\frac{1}{z}$ find the image of $x^{2}-y^{2}=1$. |  |

B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

|  | 3) If $\mathrm{f}(\mathrm{z})$ is analytic function of z , prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|f(z)\|^{2}=4\left\|f^{\prime}(z)\right\|^{2}$ <br> 4) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path (i) $y=x(i i) y=x^{2}$ |
| :---: | :---: |
| Q. 21 | Attempt the following <br> 3) Find the image of infinite strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$ also show the region graphically. <br> 4) Define line integral .Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$; (ii) the parabola $x=3 y^{2}$ |
| Q. 22 | Attempt the following <br> 3) Define bilinear transformation, Show that the transformation $w=\frac{2 z+3}{z-4}$ maps the circle onto the straight line $4 u+3=0$ <br> 4) State Cauchy integral theorem and Cauchy integral formula. Evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z \quad, \text { where } c:\|z\|=3$ |
| Q. 23 | Attempt the following <br> 3) Determine the analytic function whose real part is $u=e^{-x}(x \sin y-y \cos x)$. <br> 4) Find the Bi-linear transformation, which maps the points $z=-1, i, 1$ into the points $w=1, i,-1$. |
| Q. 24 | Attempt the following <br> 3) Find the Bi-linear transformation which maps the points $z=1, i,-i$ into the Points $w=0,1, \infty$. <br> 4) Use Cauchy's integral formula to evaluate $\int_{C} \frac{e^{2 z}}{(z+1)^{4}} d z$, where $C$ is the circle $\|z\|=2$. |
| Q. 25 | Attempt the following <br> 3) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. <br> 4) Find the image of $\|z-2 i\|=2$ under the mapping $w=\frac{1}{z}$ |
| Q. 26 | Attempt the following |

B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

|  | 3) Evaluate $\int_{1-i}^{2+3 i}\left(z^{2}+z\right) d z$ along the line joining the points $(1,-1)$ and $(2,3)$. <br> 4) Evaluate $\oint_{C} \frac{2 z+1}{z^{2}+z} d z$; where $C$ is $\|z\|=\frac{1}{2}$. |
| :---: | :---: |
| Q. 27 | Attempt the following <br> 3) If $w=u+i v$ represent the complex potential function for an electric field and $u=3 x^{2} y-y^{3}$, determine the function $v$. <br> 4) State the Residue theorem and evaluate $\int_{C} \frac{2 z+1}{(2 z-1)^{2}} d z$, where $C$ is the circle $\|z\|=1$. |
| Q. 28 | Attempt the following <br> 3) Prove that $f(z)=e^{2 z}$ is analytic every in the plane and find its derivative. <br> 4) Expand $f(z)=\frac{z}{(z+1)(z+2)}$ about $z=-2$. |
| Q. 29 | Attempt the following <br> 3) Evaluate $\int_{0}^{3+i} z^{2} d z$ along (i) the line $y=\frac{x}{3}$ (ii) the parabola $x=3 y^{2}$ <br> 4) Find the image of the upper half plane under the transformation $w=\frac{z}{i-z}$. |
| Q. 30 | Attempt the following <br> 3) Find the Bi-linear transformation which maps the points $z=1, i,-i$ into the Points $w=0,1, \infty$. <br> 4) Determine the analytic function whose real part is $y+e^{x} \cos y$. |
| Q. 31 | Attempt the following <br> 3) Evaluate $\int_{C} \frac{z^{2}+1}{z(2 z+1)} d z$ where C is $\|z\|=1$. <br> 4) Under the transformation $w=\frac{1}{z}$ find the image of $x^{2}-y^{2}=1$. |
| Q. 32 | Attempt the following <br> 3) Find the analytic function whose imaginary part is $e^{x} \sin y$ <br> 4) Under the transformation $w=\frac{1}{z}$ find the image of $\|z-2 i\|=2$. |

Each question is of equal Marks (10 Marks)

| Q. 33 | Attempt the following <br> 3) Evaluate $\int_{C} \frac{z^{2}+1}{z(2 z+1)} d z$ where C is $\|z\|=1$. <br> 4) Under the transformation, $w=\frac{1}{z}$ find the image of $x^{2}-y^{2}=1$. |
| :---: | :---: |
| Q. 34 | Evaluate <br> (i) $\int_{c} \frac{e^{2 z}}{(z+1)^{4}} d z$; where $c:\|z\|=4$ <br> (ii) $\int_{c} \frac{e^{z}}{(z+1)^{4}(z-2)} d z$; where $c:\|z-1\|=3$ |
| Q. 35 | Using Newton's interpolation formula, find the values of $f(22)$ from the following data. |
| Q. 36 | Using Lagrange's interpolation formula to find $f(5)$ from following data. |
| Q. 37 | Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ with $\mathrm{h}=1$ by using Simpson's $3 / 8$ rule. |
| Q. 38 | Find $y^{\prime}(0)$ and $y^{\prime \prime}$ from the following table. |
| Q. 39 | Solve $y_{n+2}-2 y_{n+1}+y_{n}=3 n+4$ |
| Q. 40 | Solve the following equations by Gauss elimination method. $\begin{aligned} & x+4 y-z=-5 \\ & x+y-6 z=-12 \\ & 3 x-y-z=4 \end{aligned}$ |
| Q. 41 | Solve the following equations by Gauss-Jordan method. |

Each question is of equal Marks (10 Marks)

|  | $\begin{aligned} & x+y+z=9 \\ & 2 x-3 y+4 z=13 \\ & 3 x+4 y+5 z=40 \end{aligned}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. 42 | Using Newton's forward interpolation formula, find the value of $f(5)$ if |  |  |  |  |  |  |
|  | x | 4 | 6 | 8 | 10 | 12 |  |
|  | $\mathrm{f}(\mathrm{x})$ | 1 | 3 | 8 | 16 | 20 |  |
| Q. 43 | Use Lagrange's formula to find the value of y at $\mathrm{x}=5$ from the following data. |  |  |  |  |  |  |
|  | x | 1 | 2 | 3 | 4 | 7 |  |
|  | y | 2 | 4 | 8 | 16 | 128 |  |
| Q. 44 | Using Picard's method, find the solution of the differential equation $\frac{d y}{d x}=x-y^{2}$ given that $y(0)=1$ up to second approximation. |  |  |  |  |  |  |
| Q. 45 | Using Taylor's series method, find the value of y at $\mathrm{x}=0.1$ to five places of decimal for the differential equation $\frac{d y}{d x}=x^{2} y-1 ; y(0)=1$. |  |  |  |  |  |  |
| Q. 46 | using Newton's forward interpolation formula, Find $\sin 52^{\circ}$ from following data |  |  |  |  |  |  |
|  |  | $\sin 45$ |  | $\sin 50^{\circ}$ | $\sin$ |  | $\sin 60^{\circ}$ |
|  |  | 0.7071 |  | 0.7660 |  |  | 0.8660 |
| Q. 47 | Using Lagrange's interpolation formula find the value of y when $\mathrm{x}=10$ from the following table |  |  |  |  |  |  |
|  |  | X |  | 5 | 6 | 9 | 11 |
|  |  | y |  | 12 | 13 | 14 | 16 |

Each question is of equal Marks (10 Marks)

B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

|  | the rectangular parallopied $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. |
| :---: | :---: |
| Q. 57 | Evaluate $\iint_{S}(\nabla \times \bar{F}) \cdot d \bar{S}$ using Stoke's theorem when $\bar{F}=\left(2 x-y,-y z^{2},-y^{2} z\right)$. Where S is the upper hemisphere of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and C is its boundary. |
| Q. 58 | Evaluate $\oint \bar{F} . d \bar{r}$ by Stoke's theorem, where $\vec{F}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$ and c is the boundary of the triangle with vertices at $(0,0,0),(1,0,0) \&(1,1,0)$. |
| Q. 59 | Evaluate $\oint_{C}\left(x y d x+x y^{2} d y\right)$ by Stoke's theorem taking C to be a square in the xy -plane with vertices $(1,0),(-1,0),(0,1) \text { and }(0,-1)$ |
| Q. 60 | Evaluate the line integral $\int_{C}[(y+3 z) d x+(2 z+x) d y+(3 x+2 y) d z]$ where C is the square formed by the lines $y= \pm 1$ and $x= \pm 1$. |
| Q. 61 | Evaluate the line integral $\int_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]$ where C is the square formed by the lines $y= \pm 1$ and $x= \pm 1$. |
| Q. 62 | Verify Green's theorem for $\oint_{C}(x+y) d x+2 x y d y$, Where C is the boundary of the region bounded by $x=0, y=0, x=a, y=b .$ |
| Q. 63 | Using Green's Theorem, evaluate $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$, where C is the boundary described counter clockwise of the triangle with vertices $(0,0)(1,0) \&(1,1)$. |
| Q. 64 | Verify Green's theorem for $\oint_{C}\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y$, Where C is the boundary of the region bounded by $\mathrm{x}=0, \mathrm{y}=0$ and $\mathrm{x}+\mathrm{y}=1$. |
| Q. 65 | Verify Divergence's theorem for $\vec{F}=4 x y z i-y^{2} j+y z k$ over the cube bounded by the planes $\mathrm{x}=0$, $x=2, y=0, y=2, z=0, z=2 \text {. }$ |

B.E. SEM - 4 (CIVIL)

Question Bank
Maths - II
Each question is of equal Marks (10 Marks)

| Q. 66 | Verify Gauss Divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ taken over the rectangular parallopied $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. |
| :---: | :---: |
| Q. 67 | Evaluate $\iint_{S}(\nabla \times \bar{F}) \cdot d \bar{S}$ using Stoke's theorem when $\bar{F}=\left(2 x-y,-y z^{2},-y^{2} z\right)$. Where S is the upper hemisphere of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and C is its boundary. |
| Q. 68 | Evaluate $\oint \bar{F} . d \bar{r}$ by Stoke's theorem, where $\vec{F}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$ and c is the boundary of the triangle with vertices at $(0,0,0),(1,0,0) \&(1,1,0)$. |
| Q. 69 | Evaluate $\oint_{C}\left(x y d x+x y^{2} d y\right)$ by Stoke's theorem taking C to be a square in the xy -plane with vertices $(1,0),(-1,0),(0,1) \text { and }(0,-1)$ |
| Q. 69 | (a) Find the directional derivative of $\phi=2 x^{2}+3 y^{2}+z^{2}$ at point $(2,1,3)$ in the direction of the vector ( $1,-2,0$ ). <br> (b) Find the directional derivative of $\phi=x y^{2}+y z^{3}$ at point $(1,-1,1)$ in the direction of the vector (1,2,2). |
| Q. 69 | (a) Find the directional derivative of $\phi=x y^{2}+y z^{3}$ at point $(1,-1,1)$ along the upward normal to the Surface $x^{2}+y^{2}+z^{2}=9$ at $(1,2,2)$. <br> (b) Find the directional derivative of $\frac{1}{r}$ in the direction of $\vec{r}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. |
| Q. 70 | (a) An electron moves such that its velocity is always perpendicular to its radius vector .Show that its path is circle. <br> (b) Find the velocity and acceleration of the particle which moves along the curve $x=2 \sin 3 t, y=2 \cos 3 t, z=8 t, t>0$. Also find the magnitude of the velocity and acceleration |
| Q. 71 | (a) Show that $\operatorname{div}(\phi \vec{A})=\phi(\operatorname{div} \vec{A})+(\operatorname{grad} \phi) \cdot \vec{A}$. <br> (b) Prove that $\operatorname{div}\left(\operatorname{grad} r^{n}\right)=\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$. |

Each question is of equal Marks (10 Marks)

| Q. 72 | (a) Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$, where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$. <br> (b) For a constant vector $\bar{a}$, show that $\nabla \times\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=-\frac{\bar{a}}{r^{3}}+\frac{3(\bar{a} \cdot \bar{r})}{r^{5}} \bar{r}$, where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$. |
| :---: | :---: |
| Q. 73 | (a) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$, where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$. <br> (b) Show that the vector field $\vec{F}=\frac{\vec{r}}{r^{3}}$ is irrotational as well as solenoidal |
| Q. 74 | (a) A fluid motion is given by $\vec{v}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$. Is the fluid motion irrotational? <br> (b) Show that $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) i+(3 x z+2 x y) j+(3 x y-2 x z+2 z) k$ is both irrotational and solenoidal |
| Q. 75 | Show that $\vec{F}=(y \sin z-\sin x) i+(x \sin z+2 y z) j+\left(x y \cos z+y^{2}\right) k$ is irrotational. Find scalar field $\phi$ such that $\vec{F}=\nabla \phi$ |
| Q. 76 | Show that $\vec{F}=\left(6 x y+z^{3}\right) i+\left(3 x^{2}-z\right) j+\left(3 x z^{2}-y\right) k$ is irrotational. Find scalar field $\phi$ such that $\vec{F}=\nabla \phi$ |

